Immunomodulation of Mytilus hemocytes by individual estrogenic chemicals and environmentally relevant mixtures of estrogens: in vitro and in vivo studies.
نویسندگان
چکیده
Endocrine disrupting compounds (EDCs) are almost ubiquitous in the aquatic environment. In the marine bivalve Mytilus the natural estrogen 17beta-estradiol (E2) and different EDCs have been recently demonstrated to affect the function of the immune cells, the hemocytes. The effects were Tamoxifen-sensitive and were mediated by rapid modulation of kinase-mediated transduction pathways. In this work we compared the in vitro effects of individual estrogenic chemicals (E2, EE: 17alpha-ethynyl estradiol; MES: mestranol; NP: nonylphenol; NP1EC: nonylphenol monoethoxylate carboxylate; BPA: bisphenol A; BP: benzophenone) on hemocyte parameters: lysosomal membrane stability (LMS), phagocytosis, lysozyme release. LMS was the most sensitive effect parameter, showing a decreasing trend at increasing concentrations of estrogens. EC50 values obtained from LMS data were utilized to calculate the estradiol equivalency factor (EEF) for each compound; these EEFs allowed for an estimation of the estrogenic potential of a synthetic mixture with a composition very similar to that previously found in waters of the Venice lagoon. Concentrated mixtures significantly affected hemocyte parameters in vitro and the effects were prevented by Tamoxifen. Significant effects of the mixture were also observed in vivo, at longer exposure times and at concentrations comparable with environmental exposure levels. The results indicate that Mytilus immune parameters can be suitably utilized to evaluate the estrogenic potential of environmental samples.
منابع مشابه
Deleterious effects of estrogenic endocrine disruptors on marine organisms: Histological Observed Effects and Some Novel Useful Monitoring Bioassays
Aquatic environments receive significant levels of chemical contaminants generated by human activities. Among these pollutants, we noticed the xenobiotics known as reproductive toxicants and endocrine disruptors. The endocrine disruption in wildlife has been the subject of many reviews and workshops in recent years. Field observations of reproductively abnormal organisms and population declines...
متن کاملAn Assessment of the Model of Concentration Addition for Predicting the Estrogenic Activity of Chemical Mixtures in Wastewater Treatment Works Effluents
The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estroge...
متن کاملAdditive Mixture Effects of Estrogenic Chemicals in Human Cell-Based Assays Can Be Influenced by Inclusion of Chemicals with Differing Effect Profiles
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of ...
متن کاملA variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic.
Sewage, a complex mixture of organic and inorganic chemicals, is considered to be a major source of environmental pollution. A random screen of 20 organic man-made chemicals present in liquid effluents revealed that half appeared able to interact with the estradiol receptor. This was demonstrated by their ability to inhibit binding of 17 beta-estradiol to the fish estrogen receptor. Further stu...
متن کاملImmunomodulation by 17β-Estradiol in bivalve hemocytes
In mammals, estrogens have both doseand cell-type specific effects on immune cells and may act as pro-inflammatory and anti-inflammatory stimuli depending on the setting. Evidence has been provided that in the bivalve mollusc Mytilus the natural estrogen 17β-estradiol (E2) can affect neuro-immune functions. In this work the immunomodulatory role of E2 in Mytilus hemocytes, the cells responsible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aquatic toxicology
دوره 81 1 شماره
صفحات -
تاریخ انتشار 2007